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a b s t r a c t

The filtering skill for turbulent signals from nature is often limited by model errors created
by utilizing an imperfect model for filtering. Updating the parameters in the imperfect
model through stochastic parameter estimation is one way to increase filtering skill and
model performance. Here a suite of stringent test models for filtering with stochastic param-
eter estimation is developed based on the Stochastic Parameterization Extended Kalman
Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative
and additive biases and involve exact formulas for propagating the mean and covariance
including the parameters in the test model. A comprehensive study is presented of robust
parameter regimes for increasing filtering skill through stochastic parameter estimation
for turbulent signals as the observation time and observation noise are varied and even
when the forcing is incorrectly specified. The results here provide useful guidelines for
filtering turbulent signals in more complex systems with significant model errors.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Filtering is the process of obtaining the best statistical estimate of a natural system from partial observations of the signal
from nature. In many contemporary applications in science and engineering, real time filtering of a turbulent signal from
nature involving many degrees of freedom is needed to make accurate predictions of the future state. This is obviously a
problem with significant practical impact. Important contemporary examples involve the real time filtering and prediction
of weather and climate as well as the spread of hazardous plumes or pollutants. A major difficulty in accurate filtering of
noisy turbulent signals with many degrees of freedom is model error [1]; the fact that the signal from nature is processed
through an imperfect model where important physical processes are parameterized due to inadequate numerical resolution
or incomplete physical understanding. Under these circumstances it is natural to devise strategies for parameter estimation
to cope with model errors to improve filtering skill with model errors [2–9].

The simplest contemporary strategy to cope with model errors for filtering with an imperfect model nonlinear dynamical
system depending on parameters, k,
du
dt
¼ Fðu; kÞ ð1Þ
is to augment the state variable u, by the parameters k, and adjoin an approximate dynamical equation for the parameters
. All rights reserved.
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dk
dt
¼ gðkÞ: ð2Þ
The right hand side of (2) is often chosen on an ad-hoc basis as gðkÞ � 0 or white noise forcing with a small variance [10,11].
The partial observations of the signal from nature are often processed by an Extended Kalman Filter (EKF, see [12–14]) applied
to the augmented system in (1) and (2) where the parameters k are estimated adaptively from these partial observations. Note
that even if the original model in (1) is linear, it readily can have nonlinear dependence on the parameters k so typically an EKF
involving the linear tangent approximation and Kalman filtering is needed for parameter estimation in this standard case.
Some recent applications of these and similar ideas to complex nonlinear dynamical system can be found in [2–4,6,7].

The topic of the present paper is the development of stringent test models for filtering turbulent signals from nature in
the presence of significant model error and the improvement of filtering and skill through systematic stochastic parameter
estimation. Here we develop a suite of exact Stochastic Parameterization Extended Kalman Filters (SPEKF) for stochastic
parameter estimation and filtering in these test models following recent work of two of the authors [15,16] for filtering
slow–fast systems. The test models include both additive and multiplicative bias corrections and their exactly solvable fea-
tures yield important new guidelines for stochastic parameter estimation. Results below include comprehensive understand-
ing of robust regimes for improved filtering skill with stochastic parameter estimation as well as delineating regimes of
parameters with poor skill as different aspects of the observation time, observation noise variance, and the properties of
the prototype signal from nature are varied. The exact statistical formulas with exponential growth in time developed in Sec-
tion 2 below also point toward the potential lack of skill of EKF for stochastic parameter estimation.

1.1. Overview of the test models

In the test models here, the signals from nature are assumed to be given by the solution of the time dependent complex
scalar Langevin equation
duðtÞ
dt
¼ �cðtÞuðtÞ þ ixuðtÞ þ r _WðtÞ þ f ðtÞ; ð3Þ
where _WðtÞ is complex white noise and f ðtÞ is a prescribed external forcing. To generate significant model error as well as to
mimic intermittent chaotic instability as often occurs in nature, we allow cðtÞ to switch between stable ðc > 0Þ and unstable
ðc < 0Þ regimes according to a two-state Markov jump process. Here we regard uðtÞ as representing one of the modes from
nature in a turbulent signal as is often done in turbulence models [17–20], and the switching process can mimic physical
features such as intermittent baroclinic instability [21]. As often occurs in practice, we assume that the switching process
details are not known and only averaged properties are modeled. Thus, the Mean Stochastic Model (MSM) with significant
model error given by
duðtÞ
dt
¼ ��cuðtÞ þ ixuðtÞ þ r _WðtÞ þ ~f ðtÞ ð4Þ
is utilized for filtering; here �c > 0 is an average damping constant and ~f ðtÞ is possibly an incorrectly specified forcing. The
SPEKF filters for stochastic parameter estimation are developed below in the context of true signal arising from (3) with
the basic imperfect models developed in (4). The context of (3) and (4) provides a stringent test problem for improving fil-
tering skill through stochastic parameter estimation which we develop below. In Section 2, we introduce the family of sto-
chastic parameter estimation models and develop exactly solvable first and second order statistics for these models
following [15,16]. Details of the model in (3) for true signal are described in Section 3 while a comprehensive study of
the filtering skill through stochastic parameter estimation is presented in Section 4. In particular, Section 4 includes discus-
sion of robustness and sensitivity to stochastic parameters in both the forced and unforced cases as well as learning the forc-
ing from the filter process when the forcing is specified incorrectly. Section 5 contains concluding discussion, which indicates
the fashion in which the stochastic estimation models, developed here, might be directly applied to turbulent dynamical sys-
tems with many degrees of freedom [22–25] as developed in a companion paper [26].

2. Exactly solvable test models for stochastic parameter estimation

2.1. Combined model

We consider a stochastic model for the evolution of state variable uðtÞ together with combined additive, bðtÞ, and multi-
plicative, cðtÞ, bias correction terms:
duðtÞ
dt
¼ ð�cðtÞ þ ixÞuðtÞ þ bðtÞ þ f ðtÞ þ r _WðtÞ;

dbðtÞ
dt
¼ ð�cb þ ixbÞðbðtÞ � b̂Þ þ rb

_WbðtÞ;

dcðtÞ
dt
¼ �dcðcðtÞ � ĉÞ þ rc

_WcðtÞ

ð5Þ
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for improving filtering with model errors. Here, x is the oscillation frequency of uðtÞ; f ðtÞ is an external forcing, and r char-
acterizes the strength of the white noise forcing _WðtÞ. Also, parameters cb and dc represent the damping and parameters rb

and rc represent the strength of the white noise forcing of the additive and multiplicative bias correction terms, respectively.
The stationary mean bias correction values of bðtÞ and cðtÞ are given by b̂ and ĉ, correspondingly; and the frequency of the
additive noise is denoted as xb. Note that the white noise _WcðtÞ is real valued while the white noises _WðtÞ and _WbðtÞ are
complex valued and their real and imaginary parts are independent real valued white noises. It is important to realize that
the parameters of the state variable uðtÞ come from the characteristics of the physical system, which is modeled by the first
equation in (5). On the other hand, parameters of bðtÞ and cðtÞ; fcb;xb;rb; dc;rcg, are introduced in the model and, in prin-
ciple, cannot be directly obtained from the characteristics of the physical system. One of the goals of this paper is to study
how the results of the filtering are sensitive to wide variations of these parameters, and to obtain some insights on how to
choose them. In our numerical study, we will consider an oscillatory external forcing
f ðtÞ ¼ Af eixf t ; ð6Þ
however, any arbitrary smooth enough function f ðtÞ can be chosen. As a special case, we will also study the unforced system
with f ðtÞ � 0.

System (5) is considered with the initial values
uðt0Þ ¼ u0;

bðt0Þ ¼ b0;

cðt0Þ ¼ c0;
which are independent Gaussian random variables with the known statistics: hu0i, hc0i, hb0i, Varðu0Þ;, Varðc0Þ, Varðb0Þ,
Covðu0;u�0Þ, Covðu0; c0Þ, Covðu0; b0Þ, Covðu0; b

�
0Þ.

2.2. Additive and multiplicative models

We consider two special cases of the combined model (5): The additive model when we have only the additive bias
correction
duðtÞ
dt
¼ ð��dþ ixÞuðtÞ þ bðtÞ þ f ðtÞ þ r _WðtÞ;

dbðtÞ
dt
¼ ð�cb þ ixbÞðbðtÞ � b̂Þ þ rb

_WbðtÞ;
ð7Þ
and the multiplicative model when we have only multiplicative bias correction
duðtÞ
dt
¼ ð�cðtÞ þ ixÞuðtÞ þ f ðtÞ þ r _WðtÞ;

dcðtÞ
dt
¼ �dcðcðtÞ � ĉÞ þ rc

_WcðtÞ;
ð8Þ
where �d is the mean value of the damping. Note that the model with additive bias correction only, (7), is linear. These two
special cases are designed for the purpose of comparison with the combined model. Moreover, studying the filter perfor-
mance based on the combined model as well as on the multiplicative and additive models will help us understand which
component of the bias corrections is more important depending on the physical properties of the system, such as its damping
and external forcing. We will find out that there are exceptional situations when the multiplicative model performs slightly
better than the combined model and there are situations when the additive model is as good as the combined model. The
former situation occurs because of sampling error in the additive bias term, bðtÞ, when the external forcing is specified cor-
rectly. However, we will demonstrate via extensive numerical study that the combined model is the most robust to the vari-
ations of parameters and, therefore, it should be the method of choice when there is no additional information that indicates
in advance that either multiplicative or additive models is better in a particular situation.

2.3. Path-wise solution

Here, we present the exact path-wise solution for system (5). Additive and multiplicative bias correction terms, bðtÞ and
cðtÞ, should be found first since the state variable uðtÞ depends on them
bðtÞ ¼ b̂þ ðb0 � b̂Þekbðt�t0Þ þ rb

Z t

t0

ekbðt�sÞdWbðsÞ; ð9Þ

cðtÞ ¼ ĉþ ðc0 � ĉÞe�dcðt�t0Þ þ rc

Z t

t0

e�dcðt�sÞdWcðsÞ; ð10Þ
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where kb ¼ �cb þ ixb, and b̂ and ĉ are the stationary bias correction values of bðtÞ and cðtÞ. Now, we introduce new notations
k̂ ¼ �ĉþ ix;
Jðs; tÞ ¼
Z t

s
ðcðs0Þ � ĉÞds0:
Then, using these notation, we find the solution for uðtÞ
uðtÞ ¼ e�Jðt0 ;tÞþk̂ðt�t0Þu0 þ
Z t

t0

ðbðsÞ þ f ðsÞÞe�Jðs;tÞþk̂ðs�t0Þdsþ r
Z t

t0

e�Jðs;tÞþk̂ðs�t0ÞdWðsÞ: ð11Þ
2.4. Exact statistics for nonlinear combined model

In this section, we show how to find the first and second order statistics of the combined model (5). These statistics are
the main formulas for updating the prior statistics in the Kalman filter. Note that the first equation in (5) is nonlinear and,
therefore, in general, Gaussian initial values at t ¼ t0 will not stay Gaussian for t > t0. However, the special structure of the
first equation in (5) allows us to find exact analytical formulas for the first and second (and, in principle, any) order statistics.
The technique of obtaining the first and second order statistics for the kind of nonlinearity used in system (5) was already
studied in [15,16]. Here, we will follow the same procedure outlining the most interesting and important points. In principle,
these formulas follow from general mathematical formulas for conditionally Gaussian processes [27]; however, the detailed
properties of the explicit formulas are of interest here.

We start with the statistics of bðtÞ and cðtÞ. The second and third equations in (5) are linear SDEs and their solutions are
Gaussian given Gaussian initial data. The mean and covariance of bðtÞ and cðtÞ are the following
hbðtÞi ¼ b̂þ ðhb0i � b̂Þekbðt�t0Þ; ð12Þ

hcðtÞi ¼ ĉþ ðhc0i � ĉÞe�dcðt�t0Þ; ð13Þ

VarðbðtÞÞ ¼ Varðb0Þe�2cbðt�t0Þ þ r2
b

2cb
ð1� e�2cbðt�t0ÞÞ; ð14Þ

VarðcðtÞÞ ¼ Varðc0Þe�2dcðt�t0Þ þ
r2

c

2dc
ð1� e�2dcðt�t0ÞÞ; ð15Þ

CovðbðtÞ; bðtÞ�Þ ¼ Covðb0; b
�
0Þe2kbðt�t0Þ; ð16Þ

CovðbðtÞ; cðtÞÞ ¼ eð�dcþkbÞðt�t0ÞCovðb0; c0Þ: ð17Þ
Next, we find the mean huðtÞi using Eq. (11)
huðtÞi ¼ ek̂ðt�t0Þhu0e�Jðt0 ;tÞi þ
Z t

t0

ek̂ðt�sÞhbðsÞe�Jðs;tÞidsþ
Z t

t0

ek̂ðt�sÞf ðsÞhe�Jðs;tÞids: ð18Þ
Following [15,16], the averages in the RHS of Eq. (18) can be computed using the characteristic function of Gaussian random
process Jðs; tÞ. Recall that for given complex Gaussian z and real Gaussian x, we have
hzebxi ¼ ðhzi þ bCovðz; xÞÞebhxiþb2
2 VarðxÞ: ð19Þ
Note that u0 and bðsÞ are Gaussian and so is Jðs; tÞ since it is an integral of Gaussian random process cðtÞ. Applying Eq. (19) to
Eq. (18) and then using Eq. (9), we find
huðtÞi ¼ ek̂ðt�t0Þðhu0i � Covðu0; Jðt0; tÞÞÞe�hJðt0 ;tÞiþ1
2VarðJðt0 ;tÞÞ þ

Z t

t0

ek̂ðt�sÞðb̂þ ekbðs�t0Þðhb0i � b̂� Covðb0; Jðs; tÞÞÞÞ

� e�hJðs;tÞiþ
1
2VarðJðs;tÞÞdsþ

Z t

t0

ek̂ðt�sÞf ðsÞe�hJðs;tÞiþ1
2VarðJðs;tÞÞds: ð20Þ
Using the linear property of the covariance, we find
Covðu0; Jðs; tÞÞ ¼
1
dc

e�dcðs�t0Þ � e�dcðt�t0Þ
� �

Covðu0; c0Þ;

Covðb0; Jðs; tÞÞ ¼
1
dc
ðe�dcðs�t0Þ � e�dcðt�t0ÞÞCovðb0; c0Þ:
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In order to find hJðs; tÞi, we integrate Eq. (13) to obtain
hJðs; tÞi ¼ 1
dc
ðe�dcðs�t0Þ � e�dcðt�t0ÞÞðhc0i � ĉÞ: ð21Þ
The variance of Jðs; tÞ can be found using Ito isometry formula [28]
Z
gðtÞdWðtÞ

� �2
* +

¼
Z

g2ðtÞdt;
for any deterministic gðtÞ. Then, we obtain
VarðJðs; tÞÞ ¼ 1

d2
c

ðe�dcðs�t0Þ � e�dcðt�t0ÞÞ2Varðc0Þ �
r2

c

d3
c

½1þ dcðs� tÞ þ e�dcðsþt�2t0Þ � ð�1� e2dcðs�t0Þ þ coshðdcðs� tÞÞÞ�:

ð22Þ
Finally, we find that the mean of uðtÞ at time t can be expressed in terms of the initial statistics of the system (5) at time t0.
The integrals in the RHS of Eq. (20) can be approximated using the trapezoidal rule,
Z t

t0

gðsÞds � h
2
ðgðt0Þ þ gðtÞÞ þ h

XN�1

j¼1

gðt0 þ jhÞ;
which gives second order accuracy, where h ¼ ðt � t0Þ=N is a time step in the equidistant partition of the interval ½t0; t� into N
subintervals. In our numerical simulations, we empirically find that h ¼ 10�3 insures numerical accuracy. Similarly as in
[15,16], we can find the second order statistics of uðtÞ; cðtÞ, and bðtÞ such as VarðuðtÞÞ; CovðuðtÞ;u�ðtÞÞ; CovðuðtÞ; cðtÞÞ;
CovðuðtÞ; bðtÞÞ, and CovðuðtÞ; b�ðtÞÞ. However, since these computations are long, we present them in the Appendix.

Next, we compare the analytically derived statistics of uðtÞ; bðtÞ, and cðtÞ with their respective averaged values through
Monte Carlo simulations. In Fig. 1, the solid line corresponds to the analytically obtained statistics such as Eq. (20) for
huðtÞi and equations in the Appendix for the second order statistics. On the other hand, circles correspond to the Monte Carlo
approximations of the same statistics through the average of Monte Carlo trials using Eqs. (9)–(11). We note excellent agree-
ment between the analytically obtained statistics and their Monte Carlo approximation which gives us high confidence in
the validity of the analytic formulas.

2.5. Observability of the combined model

So far, we have shown that the first and second order statistics of the combined model (5) can be found analytically. In
principle the same strategy can be used to compute any order statistics. However, for the purpose of using the Stochastic
Parameterization Extended Kalman Filter (SPEKF) as in [15,16], we only need the mean and covariance. Also, we can easily
reduce the equations for the first and second order statistics to the cases of only multiplicative or only additive bias correc-
tion terms. In the former case, we would only have two variables uðtÞ and cðtÞ. Therefore, we would only compute the sta-
tistics that involve only these two variables; and the formulas for these statistics are obtained by setting bðtÞ � 0 in the
formulas for the statistics of the combined model. On the other hand, for the case of only additive bias correction terms,
we only have the variables uðtÞ and bðtÞ. We can either find the formulas for the first and second order statistics directly from
the original model 5) by setting cðtÞ � ĉ, or we can set cðtÞ � ĉ (and, therefore, Jðs; tÞ � 0) in the formulas for the first and
second order statistics of the combined model stated in Section 2.4 and the Appendix.

Next, we study the observability [29,13,14] of the combined model (5). Since this model is nonlinear, we first linearize it
around a mean state
uðtÞ ¼ �uðtÞ þ ~uðtÞ;

bðtÞ ¼ �bðtÞ þ ~bðtÞ;

cðtÞ ¼ �cðtÞ þ ~cðtÞ:
Then, the homogeneous part of the dynamics of the perturbation vector eU ¼ ð~u; ~b; ~cÞT is given by
deU
dt
¼ AeU; ð23Þ
where the matrix A becomes
A ¼
k 1 ��u
0 kb 0
0 0 �dc

0B@
1CA;



Fig. 1. First and second order statistics of uðtÞ; bðtÞ, and cðtÞ. Solid line corresponds to the analytical formulas for the statistics and circles correspond to
Monte Carlo averaging of an emsemble of solutions.
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where k ¼ ��cþ ix. The solution for Eq. (23) is given by
eUðtÞ ¼ F eUðt0Þ;
where
F ¼ eAt ¼
ekt ekt�ekt

k�kb
��u ekt�e�dc t

dcþk

0 ekbt 0
0 0 e�dct

0BB@
1CCA:
In our study, we only have observations of uðtÞ but not of bðtÞ or cðtÞ since the last two variables are parameters artificially
introduced in the model. So the observation, v, is modeled by
v ¼ Gðu; b; cÞT þ ro; ð24Þ
where ro is a Gaussian noise with zero mean and variance ro and
G ¼ 1 0 0ð Þ
is the observation operator. Recall that observability [29,12–14] of the linear system, (23) and (24), is associated with the
rank of the observability matrix
O ¼
G

GF

GF2

264
375:
In our filtering problem, the observability matrix becomes
O ¼

1 0 0
ekt ekbt�ekt

k�kb
��u ekt�e�dc t

dcþk

e2kt ðekbt�ektÞ2

ðk�kbÞ2
��u2 ðekt�e�dc tÞ2

ðdcþkÞ2

0BB@
1CCA:
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Then, the linear system is nonobservable, when the observability matrix is singular, i.e., detðOÞ ¼ 0 with
detðOÞ ¼ ��u
ðekt � e�dctÞðekbt � ektÞ
ðdc þ kÞðk� kbÞ

� ekbt � ekt

kb � k
þ �u

ekt � e�dct

dc þ k

� �
¼ 0: ð25Þ
This determinant vanishes for any t if �u ¼ 0 in the case k – kb and dc þ k – 0. The first term, �u ¼ 0, shows the loss of observ-
ability in the multiplicative bias correction term, while the vanishing of the last factor in (25) corresponds to the loss of
observability in the additive bias correction term for specific times depending on �u; kb; dc. This fact can be easily verified
by checking the observability for both the additive and multiplicative models in (7) and (8), respectively.
3. Markov switching models for true signal to be filtered

In this section, we describe a stochastic process that will be used as the true signal for filtering. In particular, we consider a
realization of the complex Ornstein–Uhlenbeck (OU) process as the true signal
duðtÞ ¼ ðð�cþ ixÞuðtÞ þ f ðtÞÞdt þ rdWðtÞ; ð26Þ
where c is damping, x is oscillation frequency, f ðtÞ is external forcing, and r is the strength of the white noise forcing. How-
ever, unlike the classical OU-process, which has constant damping, we consider the OU-process with time dependent damp-
ing cðtÞ. In particular, we choose the damping that is modeled by a two-state Markov chain. This way, damping takes one of
the two constant values, positive and negative. The positive value corresponds to stable dynamics and negative damping cor-
responds to unstable dynamics. We choose the time averaged damping to be positive to ensure a statistically stable dynam-
ics. This OU-process with two-state Markov damping coefficients is designed to mimic signals from ‘‘nature”, such as
nonlinear chaotic stochastic dynamical systems with stable and unstable regimes of behavior. A concrete example from
atmosphere ocean science of this regime-like behavior is monitoring one Rossby wave amplitude of a baroclinic fluid as
the mean state randomly changes between regimes of stability and baroclinic instability [21]. Next, we describe how the
Markov switching model chooses the value of the damping at each time.

3.1. Two-state Markov switching model

Here, we give a brief review about the two-state continuous-time Markov process. For a much more extensive discussion
of the finite-state Markov chains see [30]. Consider a stochastic process XðtÞ that can only take one of the two values
S ¼ fsst; sung;
which correspond to stable and unstable dynamics, for example. Suppose, the system is in the stable state sst at the initial
time t0. We define
Tst ¼ infft : XðtÞ ¼ sun; t > t0g
to be the time during which the system stays in this stable state before it switches to the unstable one. We can use the def-
inition of m as a rate of leaving state sst to find that
PðTst 6 DtÞ ¼ mDt þ oðDtÞ:
This implies an exponential distribution of Tst with parameter m
PðTst < sÞ ¼ 1� e�ms;
where s ¼ t � t0. Similarly, the time Tun that the system spends in the unstable regime is an exponential random variable
with the distribution
PðTun < sÞ ¼ 1� e�ls:
Let us now use the two-state Markov chain defined here in order to model the switching of damping cðtÞ of the signal uðtÞ
governed by Eq. (26). Suppose that damping cðtÞ switches between the values dþ ¼ 2:27 (stable phase) and d� ¼ �0:04
(unstable phase). Moreover, we set m ¼ 0:1 and l ¼ 0:2 such that the system should spend on average 10 time units in
the stable regime and five time units in the unstable regime. The average damping of the system becomes
�d ¼ md� þ ldþ

mþ l
¼ 1:5: ð27Þ
3.2. Generating the true signal

Now, we can outline the procedure for how we generate the true signal. First of all, we generate a time series for the evo-
lution of the damping cðtÞ using the exponential distribution of switching times as discussed in the previous section. Since



Fig. 2. Unforced (first panel) and forced (third panel) versions of the true trajectory (Re½uðtÞ� shown) with switching damping, cðtÞ, (second and forth panels
for the unforced and forced case, correspondingly).
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the damping in the model is piecewise constant, the solution uðtÞ can be exactly computed on each interval ½t0; t1�, where
cðtÞ ¼ const. For example, in the stable regime with cðtÞ ¼ dþ we obtain
uðt1Þ ¼ uðt0Þeð�dþþixÞðt1�t0Þ þ
Z t1

t0

f ðsÞeð�dþþixÞðt1�sÞdsþ r
Z t1

t0

eð�dþþixÞðt1�sÞdWðsÞ:
Then if on the next time interval ½t1; t2�, the system is in the unstable phase with cðtÞ ¼ d�, we find the following solution
uðt2Þ ¼ uðt1Þeð�d�þixÞðt2�t1Þ þ
Z t2

t1

f ðsÞeð�d�þixÞðt2�sÞdsþ r
Z t2

t1

eð�d�þixÞðt2�sÞdWðsÞ:
Now, before we show a representative generated trajectory, we discuss typical parameters for (5) which we use in this paper.
We take �d ¼ 1:5; x ¼ 1:78; r ¼ 0:1549. We also introduce the typical energy of uðtÞ to be the long time variance E ¼ r2=2�d.
These values correspond to the typical damping, oscillation and energy spectrum of an intermediate (in our example, we
choose the 5th) mode of a barotropic Rossby waves that exhibits intermittent baroclinic instability [21] with the average
3 day decorrelation time.

In Fig. 2, we demonstrate the sample trajectories uðtÞ given by Eq. (26) and the corresponding evolution of the damping
cðtÞ. The first and second panels of Fig. 2 correspond to the unforced case with f ðtÞ ¼ 0; the third and fourth panels of Fig. 2
correspond to the forced case with f ðtÞ given by Eq. (6) with Af ¼ 1 and xf ¼ 0:15. Note that in both forced and unforced
cases, the regions of instability with cðtÞ ¼ d� are reflected by the significant growth of the signal uðtÞ around its mean state.
However the mean states are different: in the unforced case the mean state is zero and in the forced case the mean back-
ground is induced by the oscillatory external forcing f ðtÞ. The trajectories shown in Fig. 2 will be used below for testing fil-
tering skill of the combined, multiplicative and additive models, discussed in Section 2.

4. Improving filtering with model errors through stochastic parameter estimation

We begin this section by discussing the classical Kalman filter with the perfectly specified model. As we discussed in Sec-
tion 1, unfortunately, the true dynamics are often unknown and hence model errors are unavoidable. The simplest com-
monly used approach, the Mean Stochastic Model (MSM), is discussed and used as a benchmark. Subsequently, we
introduce the Stochastic Parameterization Extended Kalman Filter (SPEKF) as a new filtering approach that includes stochas-
tic parameter estimation to improve the filtering skill in the presence of model errors. In Sections 4.2–4.4, we numerically
check the filter performance for the unforced case, the forced case, and the case with incorrect forcing specification, consec-
utively. We then conclude this section with a brief summary of the filter performance.
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4.1. Suite of filters

The classical Kalman filter [29,12] is an optimal two-step predictor and corrector method that includes observations at
discrete time to adjust the prediction when the filter and observation models are linear and Gaussian. For equidistance
discrete time setting, tmþ1 ¼ tm þ Dt, the Kalman filtering problem can be written as follows
umþ1 ¼ Fmþ1um þ fmþ1 þ rmþ1; ð28Þ

vmþ1 ¼ Gumþ1 þ ro
mþ1; ð29Þ
where in Eq. (28), the true signal um 2 CN is the quantity of interest at time tm; Fm 2 CN�N is the discrete linear deterministic
operator that maps uðtÞ forward in time, fm 2 CN is an external forcing at time tm, the N-dimensional complex valued noise

rm ¼ ðrm;1 þ irm;2Þ=
ffiffiffi
2
p

is defined with Gaussian white noise components frm;i 2 RN; i ¼ 1;2g with mean zero and variance
rm 2 CN�N . Observation vm 2 CM is modeled as a transformation of the true signal um via linear operator G 2 CM�N plus a com-
plex Gaussian noise ro

m ¼ ðro
m;1 þ iro

m;2Þ=
ffiffiffi
2
p
2 CM , where each component fro

m;i 2 RM; i ¼ 1;2g has zero mean and variance
ro 2 CM�M .

4.1.1. Perfectly specified model
The basic Kalman filter solution to (28) and (29) produces an estimate of the mean and covariance of umþ1 prior and

posterior to knowing observation vmþ1 [29,12–14]. The prior mean state and covariance are denoted by �umþ1jm and rmþ1jm,
consecutively, while the posterior mean state and covariance are denoted by �umþ1jmþ1 and rmþ1jmþ1, consecutively. These
statistics are dynamically updated as follow:

Prior update:
�umþ1jm ¼ eF mþ1�umjm þ ~f mþ1; ð30Þ

rmþ1jm ¼ eF mþ1rmjmeF �mþ1 þ ~rmþ1: ð31Þ
Posterior update:
�umþ1jmþ1 ¼ �umþ1jm þ Kmþ1ðvmþ1 � G�umþ1jmÞ; ð32Þ

rmþ1jmþ1 ¼ ðI � Kmþ1GÞrmþ1jm; ð33Þ

Kmþ1 ¼ rmþ1jmG�ðGrmþ1jmG� þ roÞ�1
; ð34Þ
where the asterisk ‘*’ in Eqs. (31) and (34) denotes the complex adjoint, eF denotes the filter model deterministic operator,
and ~r denotes the filter model variance. The posterior mean update, �umþ1jmþ1, in (32) is simply a linear combination between
the prior mean state, �umþ1jm, and observation, vmþ1, weighted in accordance to the Kalman gain matrix Kmþ1 2 CN�M . In the
remainder of this paper, the signal we filter is a single complex value (see Section 3), therefore in the perfectly specified mod-
el setting M ¼ N ¼ 1 and the observation operator G is nothing but simply a scalar quantity; we choose G ¼ 1. For scalar
problems, the Kalman gain is bounded by 0 6 Km 6 1 and the filter weights fully toward the prior mean state (model) when
Km ¼ 0 and fully toward the observation when Km ¼ 1 (see Eq. (32)).

In the perfectly specified model setting, the exact true dynamics as in (28) are used to propagate the mean and covariance
forward in time. Given the true dynamics discussed in Section 3, we have
eF mþ1 ¼ Fmþ1 ¼ exp �
Z tmþ1

tm

cðsÞdsþ ixDt
� �

; ð35Þ

~rmþ1 ¼ rmþ1 ¼
r2

2�d
1� e�2�dDt
� �

; ð36Þ

~f mþ1 ¼ fmþ1; ð37Þ
where Dt ¼ tmþ1 � tm denotes the observation time.

4.1.2. Mean Stochastic Model (MSM)
In reality, the true dynamics in Eq. (28) are unknown and what is available is long time average statistics of the true signal

based on various measurements from past events, such as the equilibrium average decorrelation time 1=�d and the equilib-
rium variance E ¼ r2=2�d (in turbulence theory, this quantity is also called the equilibrium energy). The simplest commonly
used filter model [24,25] is the Mean Stochastic Model (MSM), based on these equilibrium statistical quantities; MSM is
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exactly the climatological stochastic model (CSM) in [24,25]. Specifically, the Mean Stochastic Model prior mean state and
covariance are updated with the following deterministic dynamical operator:
eF mþ1 ¼ expfð��dþ ixÞDtg; ð38Þ
where �d is the average damping in (27) and use exactly the same ~rmþ1 and ~f mþ1 as in the perfectly specified model. We shall
see in Sections 4.2–4.4 that this standard approach has large model error in general, especially when many transitions
between stable and unstable regimes occur.

4.1.3. Stochastic Parameterization Extended Kalman Filter (SPEKF)
The classical approach for online estimation of model errors in the context of filtering (or data assimilation) is to append

the parameters that represent model error (additive bias correction, bðtÞ) to the state vector uðtÞ 2 CN and filter the aug-
mented system ðuðtÞ; bðtÞÞ 2 C2N with the Kalman filter formula in (32) and (33) such that the observation operators
G 2 CM�2N (see [7]). In many applications [5,4,3,6–9], this approach has been advocated with various assumptions on the
dynamics of bðtÞ; the two most popular choices are with constant dynamics for bðtÞ and random white noise. Our approach
is motivated by this classical bias correction augmentation, however we consider Ornstein–Uhlenbeck processes on the addi-
tive bias correction term bðtÞ and a multiplicative bias correction term cðtÞ; the latter yields a nonlinear model as discussed
in Section 2.

4.1.3.1. The combined model (SPEKF-C). The combined (multiplicative and additive) augmented system (5) with its observa-
tions is given as follows:
duðtÞ ¼ ½ð�cðtÞ þxiÞuðtÞ þ bðtÞ þ f ðtÞ�dt þ rdWuðtÞ; ð39Þ

dbðtÞ ¼ ð�cb þxbiÞðbðtÞ � b̂Þdt þ rbdWbðtÞ; ð40Þ

dcðtÞ ¼ �dcðcðtÞ � ĉÞdt þ rcdWcðtÞ; ð41Þ

ReðvmÞ
ImðvmÞ

� �
¼ G

Re½um�
Im½um�
Re½bm�
Im½bm�

cm

0BBBBBB@

1CCCCCCAþ
ro

m;1

ro
m;2

 !
; ð42Þ
with the observation operator
G ¼
1 0 0 0 0
0 1 0 0 0

� �
: ð43Þ
Here fro
m;i; i ¼ 1;2g are independent Gaussian noises with mean zero and variance ro=2. Eqs. (39)–(42) are solved at every

discrete time tm (when an observation is available), where tmþ1 ¼ tm þ Dt. The real observation model in Eq. (42) is very
important in the filtering because, unlike in the perfectly specified model or MSM where cross covariances between the real
and imaginary components are zero, there are significant cross covariances between the evolving components and param-
eters of the system, as shown in Section 2.4 and the Appendix.

Notice that there are five additional stochastic parameters fcb;xb;rb; dc;rcg in this stochastic parameterization strategy
for estimating two bias correction terms bðtÞ and cðtÞ in Eqs. (40) and (41), which may seem to be inefficient. However, as we
will find out below, this model filters the system effectively for a broad range of these five parameters. It is worth pointing
out that we are not interested in finding optimal parameters for filter performance but robust parameter regimes with
significantly improved filter skill for practical generalizations especially when higher dimensional systems are considered.

As discussed in Section 3, we typically observe only uðtÞ in nature and therefore the observation operator is given as in
(43). We refer to this filtering problem with both additive and multiplicative bias corrections in Eqs. (39)–(42) as the
‘‘Stochastic Parameterization Extended Kalman Filter-Combined model” (SPEKF-C) since the classical Extended Kalman Filter
(EKF) linearizes the nonlinear system [13,14], whereas SPEKF uses the exact statistics to update the mean and covariances for
uðtÞ; bðtÞ; cðtÞ between observation times, as derived in Section 2 and the Appendix. The formulas listed there show exponen-
tial growth of the mean and covariance in the exact statistics in time which can introduce large errors in using standard EKF
for the augmented system.

4.1.3.2. Theadditive model (SPEKF-A). The simplest approach is to augment only the additive bias correction term bðtÞ and set
the damping term cðtÞ in (39) to be �d. In particular, we consider the following additive augmented system (7)
duðtÞ ¼ ½ð��dþxiÞuðtÞ þ bðtÞ þ f ðtÞ�dt þ rdWuðtÞ; ð44Þ



Fig. 3. Unforced case: posterior mean state xðtÞ ¼ Re½uðtÞ� (thick solid line) as a function of time for simulations with Dt ¼ 0:25; ro ¼ E and stochastic
parameters fcb ¼ 0:1�d;xb ¼ x;rb ¼ 5r; dc ¼ 0:01�d;rc ¼ 5rg, compared with the true signals (dashes), and observations (circle).
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dbðtÞ ¼ ð�cb þxbiÞðbðtÞ � b̂Þdt þ rbdWbðtÞ; ð45Þ
ReðvmÞ
ImðvmÞ

� �
¼ G

Re½um�
Im½um�
Re½bm�
Im½bm�

0BBB@
1CCCAþ ro

m;1

ro
m;2

 !
; ð46Þ
where
G ¼
1 0 0 0
0 1 0 0

� �
:

Note that as we mentioned earlier, in many applications the dynamics in (45) is often chosen to be dbðtÞ ¼ 0; dbðtÞ ¼ const:;
or dbðtÞ ¼ rbdWbðtÞ [6,5,4,3].



Fig. 4. Unforced case: posterior mean bias correction terms, Re½ bð tÞ� and

c

ð tÞ , as functions of time of the corresponding simulations in Fig. 3.
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4.1.3.3. The multiplicative model (SPEKF-M). We also consider a simplified version of SPEKF with only the multiplicative bias
correction term cðtÞ. Formally, the filter problem can be written as follows:
duðtÞ ¼ ½ð�cðtÞ þxiÞuðtÞ þ f ðtÞ�dt þ rdWuðtÞ; ð47Þ

dcðtÞ ¼ �dcðcðtÞ � ĉÞdt þ rcdWcðtÞ; ð48Þ

ReðvmÞ
ImðvmÞ

� �
¼ G

Re½um�
Im½um�

cm

0B@
1CAþ ro

m;1

ro
m;2

 !
; ð49Þ
where
G ¼
1 0 0
0 1 0

� �
:

To be consistent, we called this approach SPEKF-M, where ‘M’ denotes multiplicative model.



Fig. 5. Unforced case: Kalman weights toward uðtÞ; bðtÞ, and cðtÞ as functions of time of the corresponding simulations in Fig. 3.
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4.2. Unforced case

In this section, we consider filter performance for the unforced case, f ðtÞ ¼ 0. We set b̂ ¼ 0 since the additive bias is
supposed to be perturbations around 0 and ĉ ¼ �d since �d ¼ 1:5 (see Section 3.2) is the average equilibrium damping
strength. In each numerical simulation, we run the filter for n ¼ 2000 assimilation cycles and we quantify the perfor-
mance by computing the Root-Mean-Square (RMS) difference between the true signal, um, and the posterior mean
state, �umjm,
E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

m¼1

j�umjm � umj2
s

:

First, we show the filter performance for Dt ¼ 0:25 (shorter than the equilibrium average decorrelation time 1=�d � 0:66) and
observation noise variance ro ¼ E ¼ 0:008, where E ¼ r2=2�d is the equilibrium variance of the true signal. In Fig. 3, we show



Fig. 6. Unforced case: average RMS errors as functions of observation times (first column) for fixed ro ¼ 0:25E; 0:5E, and E and as functions of relative
observation noise variances, ro=E, (second column) for fixed observation times Dt ¼ 0:25; 0:5; 0:75.
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trajectories of xðtÞ ¼ Re½uðtÞ� for f�d ¼ 1:5;x ¼ 1:78;r ¼ 0:1549g (as in Section 3.2) with stochastic parameters fcb ¼
0:1�d;xb ¼ x;rb ¼ 5r; dc ¼ 0:01�d;rc ¼ 5rg for SPEKF-C, fdc ¼ 0:01�d;rc ¼ 5rg for SPEKF-M, fcb ¼ 0:1�d;xb ¼ x;rb ¼ 5rg
for SPEKF-A, and compare their skill with the perfectly specified model and MSM. These stochastic parameter sets
are obtained empirically and their robustness will be discussed later in more detail. We find that all three SPEKFs are
almost as skillful as the perfectly specified model; the RMS errors of the perfectly specified model is 0.04 and SPEKFs
are roughly 0.045–0.05, which is 25% less than simply trusting the observations with error

ffiffiffiffiffiffiffiffiffiffi
ro=2

p
� 0:06. The MSM, on

the other hand, misses some of the peaks in the unstable regime (see Fig. 3) and its RMS error, 0.07, is larger than the
observation error.

In Fig. 4, we plot the corresponding bias correction terms, Re½bðtÞ� and cðtÞ, for the same simulations. We find that
the additive bias correction term, bðtÞ, in SPEKF-C and SPEKF-A with damping time scale 1=cb � 6:6, learns the model
errors based on the given observations; it provides a significant bias correction whenever the system is unstable and
small bias correction in the stable regime. In the last two panels of Fig. 4, we notice a significant difference between
SPEKF-C and SPEKF-M in tracking cðtÞ although the filtering skill in uðtÞ is nearly similar. The simulations suggest that



Fig. 7.Unforced case: average RMS errors ofxðtÞ ¼ Re½uðtÞ�(first columns) andcðtÞ(second column) as functions of multiplicative stochastic parametersf d

SPEKF-C does not need an accurate prediction of cðtÞ for accurate prediction of uðtÞ since bðtÞ plays a significant role
in correcting the bias while cðtÞ is only the tendency of bias correction. On the other hand, when additive bias correc-
tion term, bðtÞ, is absent as in SPEKF-M, more accurate prediction of cðtÞ is necessary for high filter skill in predicting
uðtÞ.

Fig. 5 shows the corresponding amplitude of the Kalman gain matrix on variables uðtÞ; bðtÞ, and cðtÞ for the simulations in
Fig. 3. We define these amplitudes by
jKuj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1;1 þ K2
2;2

q
;

jKbj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

3;1 þ K2
4;2

q
;

jKcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

5;1 þ K2
5;2

q
;

for the fully combined model in which the Kalman gain matrix is K 2 R5�2. For SPEKF-A, only jKuj and jKbj exist since

K 2 R4�2; for SPEKF-A, only jKuj and jKcj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

3;1 þ K2
3;2

q
exist since K 2 R3�2. The numerical experiments suggest that the per-

fectly specified model, SPEKF-C, and SPEKF-M weigh more toward the observations (larger jKuj) in the unstable regime and
more toward the model in the stable regime (smaller jKuj). The Kalman weight jKuj of SPEKF-A and MSM are constant since
they both are linear filters. We are especially interested in the Kalman weights of the parameters bðtÞ; cðtÞ which indicate
how much information is transferred to these parameters from the observed signals. The variations in the Kalman weight
toward bðtÞ suggests substantial learning in both SPEKF-C and SPEKF-A. Here, jKbj for SPEKF-C weighs more toward
observations in the stable regime and more toward the model in the unstable regime; this behavior is opposite to jKuj. In
this simulation, we find that the Kalman weights toward c; jKcj for SPEKF-C and SPEKF-M are on the same order, but later
in the forced case (see Fig. 15), we will see that the Kalman weight jKcj for SPEKF-C is mostly smaller than that for SPE-
KF-M, which confirms the importance of bðtÞ compared with cðtÞ.

In Fig. 6, we show the RMS errors for the same stochastic parameters as above for various observation times
Dt ¼ 0:25;0:5;0:75 and relative observation error variances ro=E ¼ 0:25;0:5;1. First, we note that MSM is consistently less
 c;rcgfor simulations with observation timeDt¼0:25 and observation noise variancero¼0:25E.Ineachpanel,we depict theRMSerrorsfor theperfectlyspecifiedmodel(solid), SPEKF-C (square),SPEKF-M(dash-dotted), SPEKF-A (circle),MSM(asterisk),andobservationerror(dashes).B.Gershgorinetal. /JournalofComputationalPhysics229(2010)1–31 15



Fig. 8. Unforced case: average RMS errors of xðtÞ ¼ Re½uðtÞ� (first columns) and cðtÞ (second column) as functions of additive stochastic parameters
fcb ;xb;rbg for simulations with observation time Dt ¼ 0:25 and observation noise variance ro ¼ 0:25E. In each panel, we depict the RMS errors for the
perfectly specified model (solid), SPEKF-C (square), SPEKF-M (dash-dotted), SPEKF-A (circle), MSM (asterisk), and observation error (dashes).
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skillful than trusting the observations. We find that the skill of SPEKF-C, SPEKF-M, and SPEKF-A are similar and their skill is
almost as good as the skill of the perfect model simulation in almost every regime. SPEKF-A is comparable to SPEKF-C when
observation noise variance is small and it slightly deteriorates as the observation noise variance increases but still is much
more skillful than MSM or even simply trusting the observations.

When observation noise variance, ro, is large the filter tends to weigh more toward the model; the fact that the skill of all
three SPEKFs are nearly as good as the skill of the perfectly specified model suggests that the additional bias corrections, b, c,
introduced in SPEKF, reduce the model errors significantly compared to MSM. When observation error is small, the skill
disparity between SPEKFs and MSM becomes less transparent since the RMS error of the perfectly specified model is very
similar to the observation error. We also find that the skill of SPEKFs decreases only slightly as the observation time increases
even beyond the correlation time. In contrast, the filtering skill of MSM decreases significantly as a function of observation
time since the model error is large. These large model errors are probably due to the increased stability transitions that can
occur between infrequent observation times.



Fig. 9. Regime where SPEKF-M (or SPEKF-C with large damping cb ¼ 5�d) fails: too strong damping, dc ¼ 10�d, with rc ¼ 5r (first row) and too weak noise
strength, rc ¼ 0:1r, with fixed dc ¼ 0:1�d (second row). Both simulations are implemented with xb ¼ x; rb ¼ r. The first column shows the posterior mean
of the multiplicative bias correction term, cðtÞ, (in thick solid line) as well as the true damping (in thin solid line) as functions of time for strong damping
and the second column shows the Kalman weight toward cðtÞ.



Fig. 11. Unforced case: average RMS errors of xðtÞ ¼ Re½uðtÞ� (first columns) and cðtÞ (second column) as functions of additive stochastic parameters
fcb ;xb;rbg for simulations with observation time Dt ¼ 0:75 and observation noise variance ro ¼ E. In each panel, we depict the RMS errors for the perfectly
specified model (solid), SPEKF-C (square), SPEKF-M (dash-dotted), SPEKF-A (circle), MSM (asterisk), and observation error (dashes).
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4.2.1. Robustness and sensitivity to stochastic parameters
Now we check the robustness and sensitivity of the filter toward variations of the following stochastic parameters

fcb;xb;rb; dc;rcg. In Figs. 7 and 8, we show the RMS errors of xðtÞ ¼ Re½uðtÞ� (first column) and cðtÞ (second column) for addi-
tive and multiplicative stochastic parameters for observation time Dt ¼ 0:25 and observation noise variance ro ¼ 0:25E. In
each row, we plot the RMS errors as functions of one of the stochastic parameters whereas the other four parameters are
fixed such that SPEKF-C has small RMS error (they are documented on each panel). From Figs. 7 and 8, we find that the fil-
tering skill of SPEKF-C is high for a wide range of parameter choices and is the most robust compared to SPEKF-M and SPEKF-
A despite the existence of regimes where SPEKF-M beats SPEKF-C by an insignificant amount and regimes where SPEKF-A is
comparable to SPEKF-C. The former situation is simply due to sampling error. Next, we discuss the parameter regimes with
poor filter skill and analyze the failure there.

When the parameter cb is large, we find that the additive bias term, bðtÞ, adjusts quickly to b̂ ¼ 0 and SPEKF-C behaves
similarly to SPEKF-M. Hence, SPEKF-C performs as badly as SPEKF-M in this regime since the latter is sensitive to variation



Fig. 12. Regime where SPEKF-M (or SPEKF-C with large damping cb ¼ 5�d) fails: too strong noise, rc ¼ 10r, with fixed dc ¼ 0:1�d; cb ¼ 0:1�d; xb ¼ x and
rb ¼ 0:1r. The first row shows the posterior mean of the multiplicative bias correction term, cðtÞ, (in thick solid line) as well as the true damping (in thin
solid line) as functions of time for strong damping and the last three rows show the Kalman weight toward uðtÞ; bðtÞ, and cðtÞ.
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of parameters (again, see dash-dotted line in Fig. 7). The first scenario for SPEKF-M (and hence SPEKF-C with large damping
cb) to fail is when the damping strength, dc, is too large. Here, the multiplicative bias correction term cðtÞ relaxes too quickly
to the equilibrium average damping ĉ ¼ �d and hence the multiplicative bias correction term cðtÞ becomes nothing more than
a sampling of random perturbations around �d. Therefore, SPEKF-C (with large damping cb ¼ 5�d) is not much more skillful
than MSM, which has damping exactly cðtÞ ¼ �d (see the first row of Fig. 9). In the same row, one can see that the Kalman
weight toward cðtÞ; jKcj, is very small (compare it with the Kalman weight for high filtering skill in Fig. 5, there jKcj ¼ Oð1Þ).

The second parameter regime with poor skill occurs when the noise strength rc is too small; then, the multiplicative bias
correction term cðtÞ is nothing but a decaying exponential solution and once it relaxes to �d (see the second row in Fig. 9),
again there is no more learning (as jKcj � 0) in SPEKF-C (again with large damping cb ¼ 5�d) and its skill is as poor as the skill
of MSM.

Earlier we found that the parameters of SPEKF-A can be tuned such that it is almost comparable to the perfectly specified
model; however we find that its parameter regime is not as robust as that of SPEKF-C (again, see Fig. 8). In particular,
numerical instability occurs when cb ¼ �d and xb ¼ x (the second term in (11) in Section 2 is singular for Jðs; tÞ ¼ 0) and



Fig. 13. Forced case: posterior mean state xðtÞ ¼ Re½uðtÞ� (thick solid line) as a function of time for simulations with Dt ¼ 0:25; ro ¼ E and stochastic
parameters fcb ¼ 0:1�d;xb ¼ x;rb ¼ 5r; dc ¼ 0:01�d;rc ¼ 5rg, compared with the true signals (dashes), and observations (circle).
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the filter diverges beyond machine infinity; also SPEKF-A is more sensitive toward variations of xb compared to SPEKF-C.
Similar to the multiplicative correction term, cðtÞ, when the damping strength is too large. cb >

�d, the additive correction
term, bðtÞ, is nothing but a tiny perturbation around zero; when rb is too small (less than r), the additive correction term
is an exponentially decaying solution.

The robustness above holds for a different observation time Dt ¼ 0:5 (below the average equilibrium decorrelation time
1=�d � 0:66) and various observation noise variances ro=E ¼ 0:5;1 (not shown). Therefore, the results shown in Figs. 3–6 for
parameter set fcb ¼ 0:1�d;xb ¼ x;rb ¼ 5r; dc ¼ 0:01�d;rc ¼ 5rg are robust.

Now we consider an observation time beyond the decorrelation time, Dt ¼ 0:75. The RMS errors in Figs. 10 and 11 suggest
that SPEKF-C is, again, the most robust strategy. Here, there are two more scenarios for SPEKF-C (with large damping cb) to
fail in addition to the two scenarios discussed earlier. When the damping is too weak, dc ¼ 10�3�d, Eqs. 41, 48 are nearly iden-
tical to the Wiener process dcðtÞ ¼ rcdWcðtÞ, with unbounded behavior for large times. When the multiplicative parameter
noise rc ¼ 10r is too large (see Fig. 12), SPEKF-C tends to over estimate in both stable and unstable regimes. Specifically,



Fig. 14. Forced case: posterior mean bias correction terms, Re½bðtÞ� and cðtÞ, as functions of time of the corresponding simulations in Fig. 13.
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there are almost no contributions from the additive bias correction term, bðtÞ, since jKbj � 0. Simultaneously, the multipli-
cative terms are too noisy. Thus, the model errors are too large to avoid and hence the filtered solutions tend to weigh more
toward observations.
4.3. Forced case

In this section, we consider filtering Eq. (26) with a smooth periodic forcing
f ðtÞ ¼ Af eixf t ;
where Af ¼ 1; xf ¼ 0:15 (same as in Section 3.2). As in the unforced case, discussed in Section 4.2, we set b̂ ¼ 0 and ĉ ¼ �d.
Observations are simulated by adding random Gaussian noises with mean zero and variance ro to the true signal, as dis-
cussed in Section 2. As shown in Fig. 2, we anticipate that such forcing increases the model errors in MSM and yields a severe
test for the stochastic parameter estimation strategies.



In Figs. 13–15, we show trajectories of the posterior mean states uðtÞ; bðtÞ; cðtÞ; and the Kalman weights with parameter
sets: fcb ¼ 0:1�d;xb ¼ x;rb ¼ 5r; dc ¼ 0:01�d;rc ¼ 5rg for SPEKF-C, fdc ¼ 0:01�d;rc ¼ 5rg for SPEKF-M, and fcb ¼ 0:1�d;rb ¼
5rg for SPEKF-A, for simulations with observation time Dt ¼ 0:25 and observation noise variance ro ¼ E ¼ 0:008. We find
that SPEKFs are almost as skillful as the perfectly specified model and their RMS errors, 0.04–0.05, are smaller than the
observation error, 0:06. On the other hand, the RMS error of MSM, 0.14, is more than twice as big as the observation error.
As in the unforced case, this choice of parameter in SPEKF-C suggests a relatively significant contribution of additive bias
correction (see bðtÞ � Oð10�1Þ and jKbj fluctuates around 2.5 in Figs. 14 and 15), respectively. In Section 4.4, we shall see that
the additive bias correction, bðtÞ, becomes even more significant when the forcing is specified incorrectly. Unlike the un-
forced case, here we find substantial skill in tracking cðtÞ with SPEKF-C (see Fig. 14) as well as SPEKF-M. This result suggests
that the multiplicative bias correction term, cðtÞ, in SPEKF-C becomes as important as the additive bias correction term, bðtÞ,
when the forcing is nonzero.

We find that the performance skill for the forced case is qualitatively similar to the unforced case as the observation time
and observation noise variances vary (see Fig. 16), except that the skill of the perfectly specified model is not very different
compared to fully trusting the observations due to a larger signal to noise ratio. In Figs. 17 and 18, we also plot the RMS



Fig. 16. Forced case: average RMS errors as functions of observation times (first column) for fixed ro ¼ 0:25E; 0:5E, and E and as functions of relative
observation noise variances, ro=E, (second column) for fixed observation times Dt ¼ 0:25; 0:5; 0:75.
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errors as functions of multiplicative and additive stochastic parameters for Dt ¼ 0:25 and ro ¼ 0:25E. We find that the
filter robustness and sensitivity toward stochastic parameters are similar to the unforced case as discussed earlier in
Section 4.2.

4.4. Learning the forcing from the filtering

In this Section, we discuss the situation when the external forcing f ðtÞ is either partially known or unknown. If we regard
the true signal as arising as a turbulent component of a more complex system, such a circumstance arises readily. In this
situation, the additive bias correction term bðtÞ is used as a learning tool for the external forcing. First, we consider the case
when the external forcing is completely unknown. This is a severe test case; thus, we set f ðtÞ � 0 in Eq. (5) and apply the
filters to recover a true signal that has the same forcing as in the previous section. In Fig. 19, we demonstrate the results
of filtering using all three methods (SPEKF-C, SPEKF-M, and SPEKF-A) with the incorrectly prescribed external forcing. We
note that the combined and additive models retain most of their skill in filtering uðtÞ (RMS errors of SPEKF-C is 0.055 and



Fig. 17. Forced case: average RMS errors of xðtÞ ¼ Re½uðtÞ� (first columns) and cðtÞ (second column) as functions of multiplicative stochastic parameters
fdc; rcg for simulations with observation time Dt ¼ 0:25 and observation noise variance ro ¼ 0:25E. In each panel, we depict the RMS errors for the
perfectly specified model (solid), SPEKF-C (square), SPEKF-M (dash-dotted), SPEKF-A (circle), MSM (asterisk), and observation error (dashes).
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of SPEKF-A is 0.059); on the other hand, the performance of the multiplicative model (with RMS error 0.111) became much
worse than in the earlier situation with the correctly specified forcing. The explanation of this behavior comes from observ-
ing the dynamics of the additive bias correction bðtÞ (Fig. 19, second panel). For both the combined and additive models, bðtÞ
captures the external forcing f ðtÞ that is present in the true signal. Moreover, in the additive model, bðtÞ also tries to recover
the multiplicative part of the noise by adding the high frequency oscillations with frequency x and large amplitude when-
ever cðtÞ takes negative values. On the other hand, the multiplicative model performs poorly—the RMS error is larger than
the average observation error,

ffiffiffiffiffiffiffiffiffiffi
ro=2

p
¼ 0:063. There is no means to repair the incorrectly specified forcing by using the mul-

tiplicative model. Moreover, the multiplicative model gives the wrong estimation for the damping parameter cðtÞ.
Next, we study how our three filtering models perform, when the external forcing is not specified exactly. Suppose either

the amplitude, or the frequency, or the phase of the forcing are unknown, while the remaining two parameters are known.
Then, we can vary the unknown parameter around its value in the true signal and study how the filter skill changes. In
Fig. 20, we show how the filter skill changes when we vary the amplitude of the forcing Af (first panel), the frequency of
the forcing xf (second panel) and the phase of the forcing /f (third panel), where the forcing has the form
f ðtÞ ¼ Af eiðxf tþ/f Þ:
The true signal was generated with the values Af ¼ 1; xf ¼ 0:15, and /f ¼ 0. We note that for all three filters and for all three
parameters of the forcing, the filters produce the results with the minimum error at the true values of the forcing parameters.
Moreover, the filters allow for the variations of the amplitude, Af , and the phase, /f , around their respective values in the true
signal. However, for SPEKF-M, even slight variations of the frequency, xf , lead to the deterioration of the filtered signal with
the RMS error greater than the observation error. We also note again that the multiplicative model is not suitable for filtering
with incorrect forcing specification. On the other hand both combined and additive models produce the filtered signal with a
skill comparable to the skill of the perfectly specified model for various frequencies.
4.5. Summary

From the numerical simulations in this section, we find that SPEKF-C is the method of choice for filtering with model
errors since its high filtering skill (nearly as good as the perfectly specified model in many regimes) is robust and the least



sensitive to variations of stochastic parameters, observation time, and observation error variance. The simpler strategies
(SPEKF-A and SPEKF-M) clearly beat MSM in some parameter regimes and sometimes their skill is as good as or even slightly
supersedes the skill of SPEKF-C but they are not as robust as SPEKF-C.

There are extreme parameter regimes in which SPEKF-C is not skillful. In particular, when large damping cb is imposed,
SPEKF-C behaves exactly like SPEKF-M. Both schemes produce poor filtering skill comparable to MSM when the multiplica-
tive damping dc is too strong or when the noise strength rc is too small since the multiplicative bias correction dynamics are
nothing more than weak perturbations around the average equilibrium damping, �d, used in MSM. When observation time is
beyond the decorrelation time, both schemes also fail for weak damping dc (here the multiplicative bias correction term is
roughly a Wiener process which has unbounded variance as a function of time) or strong noise rc (too much fluctuation in
the OU-process overestimates the multiplicative bias correction term, cðtÞ).

We also note that the advantage of SPEKFs over MSM in addressing the model errors is more significant when regime
transitions occur more often. In a numerical study not reported here, we find that all schemes including MSM and the



Fig. 19. Filter performance with incorrect forcing specification for ro ¼ E, Dt ¼ 0:25. The first panel shows uðtÞ (the true signal is shown with solid black line,
SPEKF-C posterior is shown with dashes, SPEKF-M posterior is shown with dots, SPEKF-A posterior is shown with solid grey line), the second panel shows
additive bias correction bðtÞ for SPEKF-C and SPEKF-A together with the true forcing f ðtÞ, the third panel shows multiplicative bias correction cðtÞ for SPEKF-
C and SPEKF-M together with the true damping.
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perfectly specified model are comparable when the true signal is mostly sitting in the stable regime. This result is understood
as follows: when the true signal is in the stable regime, any (discussed) filter model (including MSM) becomes skillful
enough to predict noise around zero in the unforced case or around the known forcing.

When the external forcing is unspecified or incorrectly specified, the additive bias correction term bðtÞ in SPEKF-C
and SPEKF-A learns the unknown part of the forcing and the combined and additive models still perform very well with
RMS errors comparable to the RMS error of the perfectly specified model. However, the absence of the additive bias correc-
tion bðtÞ in the multiplicative model SPEKF-M prevents this model from being able to filter with incorrect forcing
specification.
5. Concluding discussion

In the preceding sections, we developed a suite of stringent test models for improving filtering skill with model errors
through systematic stochastic parameter estimation. The key mathematical feature was the development of exact equations



Fig. 20. Filter performance with incorrect forcing specification. The first panel shows the dependence of the RMS error on the forcing amplitude Af , the
second panel on the forcing frequency xf , and the third panel on the forcing phase /f .
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for propagation of the mean and covariance which allowed for a suite of SPEKF algorithms for stochastic parameter estima-
tion. In particular, the multiplicative bias term, c, is assumed to satisfy an OU-process rather than two-state Markov chain
process that underlies the dynamics of the true signal. Section 4 contains a comprehensive study of robust parameter re-
gimes for improving filter skill in the presence of significant model error as the observation time, observation noise, and forc-
ing in true signal are varied. Other significant developments in Section 4 included improving the filtering skill even with
incorrectly specified forcing and theoretical understanding of the extreme regimes where stochastic parameter estimation
fails. It is worth noting here that for turbulent signals that have source terms as in combustion or moist convection, the
source terms are often not known precisely so these last results have potential for extensive further development. A more
detailed summary of improved filtering skill has already been given at the end of Section 4.

Finally, at first glance, it might seem to the reader that the test models developed here which give useful general insight
into stochastic parameter estimation apply only for a complex scalar field. However, two of the authors [22–25] have devel-
oped suites of approximate filters with significant skill for filtering turbulent signals with many degrees of freedom based on
decoupled Langevin models as in (4); the stochastic parameter estimation algorithms to improve filtering and predictive skill
developed here apply directly to these models. These results are presented in a companion article for a prototype filtering
problem [26].
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Appendix A. In this Appendix, we compute the second order statistics of uðtÞ; cðtÞ, and bðtÞ. These analytical formulas are
used in the Kalman filter formulation to propagate the posterior covariance from previous analysis to obtain a prior
covariance for the next analysis.
A.1. VarðuðtÞÞ

We compute the variance using
VarðuðtÞÞ ¼ hjuðtÞj2i � jhuðtÞij2:
In terms of the following notations:
uðtÞ ¼ Aþ Bþ C;
where
A ¼ e�Jðt0 ;tÞþk̂ðt�t0Þu0; ð50Þ

B ¼
Z t

t0

bðsÞ þ f ðsÞð Þe�Jðs;tÞþk̂ðt�sÞds; ð51Þ

C ¼ r
Z t

t0

e�Jðs;tÞþk̂ðt�sÞdWðsÞ; ð52Þ
we rewrite
hjuðtÞj2i ¼ hjA2ji þ hjB2ji þ hjC2ji þ 2Re½ðA�BÞ�: ð53Þ
We find the RHS of Eq. (53) term by term
hjAj2i ¼ e�2ĉðt�t0Þðjhu0ij2 þ Varðu0Þ � 4Re½hu0i�Covðu0; Jðt0; tÞÞ� þ 4jCovðu0; Jðt0; tÞÞj2Þe�2hJðt0 ;tÞiþ2VarðJðt0 ;tÞÞ;
where we used the following property of Gaussian random variables [15,16]
hzwebxi ¼ ½hzihwi þ Covðz;w�Þ þ bðhziCovðw; xÞ þ hwiCovðz; xÞÞ þ b2Covðz; xÞCovðw; xÞ�ebhxiþb2
2 VarðxÞ; ð54Þ
for complex Gaussian z and w and real Gaussian x.
Next, we have
hjBj2i ¼
Z t

t0

ds
Z t

t0

drbVarðs; rÞ;
where
bVarðs; rÞ ¼ e�ĉð2t�s�rÞþixðr�sÞ � e�hJðs;tÞi�hJðr;tiþ
1
2VarðJðs;tÞÞþ1

2VarðJðr;tÞÞþCovðJðs;tÞ;Jðr;tÞÞ � hbðsÞb�ðrÞi � hbðsÞi½Covðb�ðrÞ; Jðs; tÞÞð½
þ vðb�ðrÞ; Jðr; tÞÞ� � hb�ðrÞi½CovðbðsÞ; Jðs; tÞÞ þ CovðbðsÞ; Jðr; tÞÞ� þ ½Covðb�ðrÞ; Jðs; tÞÞ
þ vðb�ðrÞ; Jðr; tÞÞ�½CovðbðsÞ; Jðs; tÞÞ þ CovðbðsÞ; Jðr; tÞÞ�Þ þ f �ðrÞðhbðsÞi � CovðbðsÞ; Jðs; tÞ
� CovðbðsÞ; Jðr; tÞÞÞ þ f ðsÞðhbðrÞi� � CovðbðrÞ; Jðs; tÞ� � CovðbðrÞ; Jðr; tÞÞ�Þ þ f ðsÞf �ðrÞ
with
hbðsÞbðrÞ�i ¼ ð1� ekbðs�t0ÞÞð1� ek�bðr�t0ÞÞjb̂j2 þ ekbðs�t0Þð1� ek�bðr�t0ÞÞb̂�hb0i þ ek�bðr�t0Þð1� ekbðs�t0ÞÞb̂hb0i�

þ ekbðs�t0Þek�bðr�t0ÞðVarðb0Þ þ jhb0ij2Þ;þ
r2

b

2cb
ðe�cbðsþr�2 minðs;rÞÞ � e�cbðsþr�2t0ÞÞeixbðs�rÞ;

CovðbðrÞ; Jðs; tÞÞ ¼ 1
dc
ðe�dcðs�t0Þ � e�dcðt�t0ÞÞekbðr�t0ÞCovðb0; c0Þ:
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We compute the covariance of Jðs; tÞ and Jðr; tÞ for t0 6 r 6 s 6 t in the following way:
CovðJðs; tÞ; Jðr; tÞÞ ¼ VarðJðs; tÞÞ þ CovðJðs; tÞ; Jðr; sÞÞ;
where
CovðJðs; tÞ; Jðr; sÞÞ ¼ Varðc0Þ
d2

c

ðe�dcðt�t0Þ � e�dcðs�t0ÞÞ � ðe�dcðs�t0Þ � e�dcðr�t0ÞÞ �
r2

c

2d3
c

ðe�dcðt�sÞ � e�dcðt�rÞ þ e�dcðtþs�2t0Þ

� e�dcðtþr�2t0Þ � 1þ e�dcðs�rÞ � e�2dcðs�t0Þ þ e�dcðsþr�2t0ÞÞ: ð55Þ
In order to find this covariance for t0 6 s 6 r 6 t, we use the fact that CovðJðs; tÞ; Jðr; tÞÞ ¼ CovðJðr; tÞ; Jðs; tÞÞ and follow the
same procedure but for s and r switched with each other. Next, we find
hjCj2i ¼ r2
Z t

t0

e�2ĉðt�sÞhe�2Jðs;tÞids ¼ r2
Z t

t0

e�2ĉðt�sÞe�2hJðs;tÞiþ2VarðJðs;tÞÞds:
Finally, we find
hA�Bi ¼ e�ĉðt�t0Þ
Z t

t0

eðkb�ixÞðs�t0Þ�ĉðt�sÞhu�0b0e�Jðt0 ;tÞ�Jðs;tÞidsþ e�ĉðt�t0Þ
Z t

t0

eixðt0�sÞ�ĉðt�sÞðb̂ð1� ekbðs�t0ÞÞ

þ f ðsÞÞhu0e�Jðt0 ;tÞ�Jðs;tÞi�ds:
where
hu�0b0e�Jðt0 ;tÞ�Jðs;tÞi ¼ ðCovðu�0; b
�
0Þ þ hu0i�hb0i � hu0i�½Covðb0; Jðt0; tÞÞ þ Covðb0; Jðs; tÞÞ� � hb0i½Covðu0; Jðt0; tÞÞ

þ Covðu0; Jðs; tÞÞ�� þ ½Covðb0; Jðt0; tÞÞ þ Covðb0; Jðs; tÞ� � ½Covðu0; Jðt0; tÞÞ þ Covðu0; Jðs; tÞÞ��Þ
� e�hJðt0 ;tÞi�hJðs;tÞiþ1

2VarðJðt0 ;tÞÞþ1
2VarðJðs;tÞÞþCovðJðt0 ;tÞJðs;tÞÞ

hu0e�Jðt0 ;tÞ�Jðs;tÞi ¼ ðhu0i � Covðu0; Jðt0; tÞÞ � Covðu0; Jðs; tÞÞ � e�hJðt0 ;tÞi�hJðs;tÞiþ1
2VarðJðt0 ;tÞÞþ1

2VarðJðs;tÞÞþCovðJðt0 ;tÞJðs;tÞÞ
A.2. CovðuðtÞ;u�ðtÞÞ

We use the definition of the covariance to find
CovðuðtÞ; u�ðtÞÞ ¼ huðtÞ2i � huðtÞi2:
We find that
huðtÞ2i ¼ hA2i þ hB2i þ 2hABi; ð56Þ
where we have used the independence of WðtÞ of other random variables. We find the RHS of Eq. (56) term by term.
hA2i ¼ e2k̂ðt�t0Þðhu0i2 þ Covðu0;u�0Þ � 4hu0iCovðu0; Jðt0; tÞÞ þ 4Covðu0; Jðt0; tÞÞ2Þe�2hJðt0 ;tÞiþ2VarðJðt0 ;tÞÞ:
Next, we have
hB2i ¼
Z t

t0

ds
Z t

t0

drbCovðs; rÞ;
where
bCovðs; rÞ ¼ ek̂ð2t�s�rÞe�hJðs;tÞi�hJðr;tiþ
1
2VarðJðs;tÞÞþ1

2VarðJðr;tÞÞþCovðJðs;tÞ;Jðr;tÞÞ � ðhbðsÞbðrÞi � hbðsÞi � ½CovðbðrÞ; Jðs; tÞÞ þ CovðbðrÞ; Jðr; tÞÞ�½
� bðrÞi½CovðbðsÞ; Jðs; tÞÞ þ CovðbðsÞ; Jðr; tÞÞ� þ ½CovðbðrÞ; Jðs; tÞÞ þ CovðbðrÞ; Jðr; tÞÞ� � ½CovðbðsÞ; Jðs; tÞÞh
þ vðbðsÞ; Jðr; tÞÞ�Þ þ f ðrÞðhbðsÞi � CovðbðsÞ; Jðs; tÞ � CovðbðsÞ; Jðr; tÞÞÞ þ f ðsÞðhbðrÞi � CovðbðrÞ; Jðs; tÞ
� CovðbðrÞ; Jðr; tÞÞÞ þ f ðsÞf ðrÞ�;
with
hbðsÞbðrÞi ¼ ð1� ekbðs�t0ÞÞð1� ekbðr�t0ÞÞb̂2 þ ekbðs�t0Þð1� ekbðr�t0ÞÞb̂hb0i þ ekbðr�t0Þð1� ekbðs�t0ÞÞb̂hb0i
þ ekbðs�t0Þekbðr�t0Þ � ðVarðb0Þ þ jhb0ij2Þ:
Finally, we find
hABi ¼
Z t

t0

ek̂ð2t�s�t0Þþkbðs�t0Þhu0b0e�Jðt0 ;tÞ�Jðs;tÞidsþ
Z t

t0

ek̂ð2t�s�t0Þðb̂ð1� ekbðs�t0ÞÞ þ f ðsÞÞhu0e�Jðt0 ;tÞ�Jðs;tÞids:
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where
hu0b0e�Jðt0 ;tÞ�Jðs;tÞi ¼ ðCovðu0; b
�
0Þ þ hu0ihb0i � hu0i½Covðb0; Jðt0; tÞÞ þ Covðb0; Jðs; tÞÞ� � hb0i½Covðu0; Jðt0; tÞÞ

þ Covðu0; Jðs; tÞÞ� þ ½Covðb0; Jðt0; tÞÞ þ Covðb0; Jðs; tÞ� � ½Covðu0; Jðt0; tÞÞ þ Covðu0; Jðs; tÞÞ�Þ

� e�hJðt0 ;tÞi�hJðs;tÞiþ1
2VarðJðt0 ;tÞÞþ1

2VarðJðs;tÞÞþCovðJðt0 ;tÞJðs;tÞÞ;
A.3. CovðuðtÞ; cðtÞÞ

The covariance of uðtÞ and cðtÞ is found as follows
CovðuðtÞ; cðtÞÞ ¼ huðtÞcðtÞi � huðtÞihcðtÞi ¼ huðtÞðcðtÞ � ĉÞi þ huðtÞiðĉ� hcðtÞiÞ
We compute the first term
huðtÞðcðtÞ � ĉÞi ¼ ek̂ðt�t0Þhu0e�Jðt0 ;tÞðcðtÞ � ĉÞi þ
Z t

t0

ek̂ðt�sÞhðbðsÞ þ f ðsÞÞe�Jðs;tÞðcðtÞ � ĉÞids

¼ �ek̂ðt�t0Þ @

@t
hu0e�Jðt0 ;tÞi �

Z t

t0

ek̂ðt�sÞ @

@t
hðbðsÞ þ f ðsÞÞe�Jðs;tÞids;
where
@

@t
hu0e�Jðt0 ;tÞi ¼ �Covðu0; cðtÞÞ þ ðhu0i � Covðu0; Jðt0; tÞÞÞ � ĉ� hcðtÞi þ 1

2
@

@t
VarðJðt0; tÞÞ

� �	 

� e�hJðt0 ;tÞiþ1

2VarðJðt0 ;tÞÞ
and
@

@t
hðbðsÞ þ f ðsÞÞe�Jðs;tÞi ¼

"
�CovðbðsÞ; cðtÞÞ þ ðhbðsÞi þ f ðsÞ � CovðbðsÞ; Jðs; tÞÞÞ

� ĉ� hcðtÞi þ 1
2
@

@t
VarðJðs; tÞÞ

� �#
e�hJðs;tÞiþ

1
2VarðJðs;tÞÞ:
The derivative of VarðJðs; tÞÞ with respect to t has the following form:
@

@t
VarðJðs; tÞ ¼ � 1

d2
c

ðr2
cðe�dcðt�sÞ � 1Þ þ ðr2

c � 2dcVarðc0ÞÞ � ðe�dcðtþs�2t0Þ � e�2dcðt�t0ÞÞÞ:
A.4. CovðuðtÞ; bðtÞÞ

We have
CovðuðtÞ; bðtÞÞ ¼ huðtÞb�ðtÞi � huðtÞihbðtÞi�:
We find
huðtÞb�ðtÞi ¼ huðtÞib̂�ð1� ek�bðt�t0ÞÞ þ eðk̂þk�bÞðt�t0Þhu0b�0e�Jðt0 ;tÞi þ ek�bðt�t0Þ
Z t

t0

ek̂ðt�sÞhb�0bðsÞe�Jðs;tÞidsþ ek�bðt�t0Þ

�
Z t

t0

ek̂ðt�sÞf ðsÞhb0e�Jðs;tÞi�dsþ r2
b

2cb

Z t

t0

e�hJðs;tÞiþ
1
2VarðJðs;tÞÞeð�ĉþiðx�xbÞÞðt�sÞ � ½e�cbðt�sÞ � e�cbðsþt�2t0Þ�ds;
where
hb0e�Jðs;tÞi ¼ ðhb0i � Covðb0; Jðs; tÞÞÞe�hJðs;tÞiþ
1
2VarðJðs;tÞÞ

hu0b�0e�Jðt0 ;tÞi ¼ ðCovðu0; b0Þ þ hu0ihb0i� � hb0i�Covðu0; Jðt0; tÞÞ � hu0iCovðb0; Jðt0; tÞÞ� þ Covðu0; Jðt0; tÞCovðb0; Jðt0; tÞÞ�Þ

� e�hJðt0 ;tÞiþ1
2VarðJðt0 ;tÞÞ

�
hb0bðsÞe�Jðs;tÞi ¼ ðekbðs�t0ÞVarðb0Þ þ hbðsÞihb0i� � hb0i�CovðbðsÞ; Jðs; tÞÞ � hbðsÞiCovðb0; Jðs; tÞÞ�

þ CovðbðsÞ; Jðs; tÞCovðb0; Jðs; tÞÞ�Þ � e�hJðs;tÞiþ
1
2VarðJðs;tÞÞ
A.5. CovðuðtÞ; b�ðtÞÞ

We have
CovðuðtÞ; b�ðtÞÞ ¼ huðtÞbðtÞi � huðtÞihbðtÞi
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We find
huðtÞbðtÞi ¼ huðtÞib̂ð1� ekbðt�t0ÞÞ þ eðk̂þkbÞðt�t0Þhu0b0e�Jðt0 ;tÞi þ ekbðt�t0Þ
Z t

t0

ek̂ðt�sÞhb0bðsÞe�Jðs;tÞids

þ ekbðt�t0Þ
Z t

t0

ek̂ðt�sÞf ðsÞhb0e�Jðs;tÞids;
where
hu0b0e�Jðt0 ;tÞi ¼ ðCovðu0; b
�
0Þ þ hu0ihb0i � hb0iCovðu0; Jðt0; tÞÞ � hu0iCovðb0; Jðt0; tÞÞ þ Covðu0; Jðt0; tÞCovðb0; Jðt0; tÞÞÞ

� e�hJðt0 ;tÞiþ1
2VarðJðt0 ;tÞÞ

hb0bðsÞe�Jðs;tÞi ¼ ðekbðs�t0ÞCovðb0; b
�
0Þ þ hbðsÞihb0i � hb0iCovðbðsÞ; Jðs; tÞÞ � hbðsÞiCovðb0; Jðs; tÞÞ

þ CovðbðsÞ; Jðs; tÞCovðb0; Jðs; tÞÞ � e�hJðs;tÞiþ
1
2VarðJðs;tÞÞ
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